N7/ -A% 920

NECESSARY CONDITIONS FOR CONTINUOUS PARAMETER
' STOCHASTIC OPTIMIZATION PROBLEMS

" CASE Fj
COPY

H. J. Kushner+
Center for Dynamical Systems
Division of Applied Mathematics
Brown University
Providence, Rhode Island

+This research was supported in part by the National Science Foundation
under grant GK 2788, in part by the National Aeronaubics and Space
Administration under grant NGL 40-002-015, and in part by the Air Force
Office of Scientific Research under grant AFOSR 693-67B.



NECESSARY CONDITIONS FOR CONTINUOUS PARAMETER
STOCHASTIC OPTIMIZATION PROBLEMS

H. J. Kushner

1l. Introduction

‘This paper applies the abstract variational theory of Neustadt
[1] to obtain a stochastic maximum principle. Since the papers of
Kushner on the stochastic meximum principle [2], [3], a number of
developments were reported in Brodeau [4], Baum [5], Fleming [6],
Sworder [7] - [8]. The versatile mathematical programming ideas
were not used explicitly in [2] - [8], and, with relative ease, we
are able to handle greater varieties of state space constraints then
treated in the references. A discrete parameter analog of the dis-
crete maximum principle of Halkin [9] and Holtzman [10] appears in
Kushuner [11]. Even in the deterministic case, the ability to handle
general constraints with relative ease gives the programming approach>
a distinct advantage over more direct approaches.

It is premature to assert that the stochastic maximum principle
will be useful in providing any deep understanding of stochastic con-
trol problems. Nevertheless, it seems likely that the implicit
geometric framework (at least in the programming approach) will
suggest some useful approximation or numerical procedures. The results

may serve as a departure point for a perturbation analysis as in the

formal work [12], and the nature and interpretation of the random




multipliers may shed additional light on the physical interpretation
of the derivatives (weak or strong) of the minimum cost function
which appears in the dynamic programming formulation for a fully
Markovian problem. These various points are under current investiga-
tion for both the present work and [11]. Even for an initially
Markovian problem, dynamic programming is not always applicable when
there are state space constraints, and the alternative programming
formulation may be useful to shed light on the control problem. For
a discussion, for an elementary stochastic control problem of the
relationship between randomized controls and }singular arcs' see [13].
The problem formulation and mathematical background is given
in Section 2. A required result of Neustadt is stated in Section 3,
the linearized equations are discussed in Section L. Section 5
derives a certain convex cone. The maximum principle is stated in
Section 6. The déveloPment in Sections 4-6 is for the open loop

case and extensions are discussed in Section T.

2. Problem Formulation and Mathematical Background

A Remark on Notation.

Let m(-,-) denote an arbitrary random function with values
m(w,t), 0 <t < T. The notation will be simplified by omitting the
® variable. The term m(t) will be used for both n(-,t) and
m(w,t), and either m(:) or m (depending on the context) will be

used for the random function m(-,-). A random variable M(-) with



value M(w) will be written simply as M.

n . . .
R~ denotes an n-dimensional Buclidean space.

Assumptions.

Let z(+) = (2,(*),---,2,(-)), 0<t<T bean n+1
dimensional normalized Brownian motion on the probability triple
(,P(+),B), where Q 1is the semple space, and P(-) the measure
on the g-algebra %4 on Q. For any finite dimensional vector

a= (a,...q,) and matrix o = {@ij; i,j = 1,...,r}, define the
2 2 2
Euclidean norms |a]|” =L ]a.]z, le|” = Zo...
it i,5
J
1 dimensional random function whose properties are described in

The control is an

n
(I-1) velow. Let £(-,:,-) denote an R valued function on
R x Rnl X [0,7] and o(:,-) an (n+l) X (nt+l) matrix valued
function on R°TT x [0,T]. Further properties of f(-,-,-) and
o(.,.) are given in (I-2) below. The control system of concern is

the n + 1 dimensional stochastic differential equation (of the It6

type) (1) on the fixed time interval [0,T]

(1) ax(t) = £(x(t),u(t),t)at + o(x(t),t)dz(t)

x() = (x(6), .. .,%, (£))" -

The control wu(-) and x(0) =satisfy (I-1) below.. Write o(aq,t) =

. . .t
[o,(a,t),...,0,(a,t)], where o, (a,t) is the i 1 column of o(a,t).

(@) ax(t) = £(x(t),u(t),t)dt + 2 o, (x(t),t)dz; (t).

+
The ' denotes transpose.



Let h(:) be a real valued Borel function on R for which

Eh(x(T)) exists for the x(T) corresponding'to any admissible control

(see I-1 below). ILet o ey tygg, Tor a fixed-integer k, denote a

sequence of fixed times satisfying O = to < tl < vee < tk+l = T. Let
. . ~io

BsevsB] and b and bl be given finite numbers. Let qi( 50 ),

i=0,...,k1, §=1,...,a; and Fo(.,-), j=1,...,b and

~3 . 1

rp(-5+), § = 1,...,b;, be real valued Borel functions on g™ x g™
a,

. ~ ~] ~ ] ~
and define q-j_(’:v’)': (qi(.’-)"”’qi (+,-)), and I‘o(-,°) =

1 bo ~ ~ ~bl
(ro(~,—),...,ro (-,°N°, rT(-,-) = (rT(-,-),...,rT (-,+))'. For any
admissible control (see I-1), let the corresponding X(to)""’x(tk+l)
satisfy E[q, (x(t;),Ex(t;))| <=, 1=0,... k1, and E|r, (x(t;),Ex(t,))]

<, i=0,T, (properties guaranteed by (I-4) below).

The Probiem.

Assume (I1-2), and the above properties on h’ai’;i' Define the

-cost funection

(3) - 9 (x(+)) = Ex (T) + En(x(T)).

In the class of admissible controls for which the corresponding

trajectories satisfy the constraints

~

(1) a, (x(t;))

ri(x(ti)) = E;i(x(‘bi),}b((ti)) =0, 1 P

]
O

Eqi(x(ti),Ex(ti)) <0, i k1

il
Q
3



assume that there is one, denoted by ﬁ, for which the cost is
minimized (or is no greater for any other control in the class).
It is assumed that qo(x(-)) = 0 implies that XO(O) = 0. As
discussed below, more general constraints can be treated. Let b
denote the corresponding optimal solution to (1).

Now, assume in addition, (13-5), and find a necessary con-

. . ~ A
dition for u and X.

Assumptions.

(I-1) ILet £%%, T >t > 0, denote a family of given g-algebras
which are non-anticipative with respect to the Wiener z(-) process.
The 24, are the data o-algebras. %{0) 1is measurable on £Z% and

2 . .

E]x(O)] < w Let @% denote a2 sequence of given non-empty 0y

dimensional sets. The family of admissible controls,'denoted by é%, ig the

collection of ny dimensional random functions wu(-,-), with values
u(w,t) in %, at time t, and u(-,t) is measurable over B.. As
noted above, we will write either u or u(-) for the function

u(-,*), and u(t) for either u(w,t) or u(-,t).

(I-2) The £(.,.,-) and o;(-,+) are Borel functions of their
arguments. f£(-,B,t) and ci(~,t) are differentiable for each fixed
B,t, and t, resp. Write f _(a,8,t) and 53 x(@t) for the matrices
with i,kth elements Efj(a,ﬁ,t)/a;k and Bdij(a,t)/a;k, resp., and
suppose that both are uniformly bounded. Assume ]f(a,ﬁ,t)[g <
Ko(l+|a|2), lci(a,t)le §.Ko(l+[a|2), uniformly in B e %, and

t ¢ [0,T]. The function f£(-,B,t) is continuous at each B ¢ th and



t € [0,T], wmiformly in t.

(I-3) For each fixed t e (0,T] and _@t measurable and %t

velued random varisble u,, there is a 8(t) > 0 so that for each

8 < 8(t) there is a random variable u

£5 with the property that

~

U, s is measurable over each .Q% and has values in each % where

s € [t-3,%], and the sequence ﬁt-& satisfies

(5) f(Q(t)}ut:t) - f(§(t):at_5:t) -0

in probability as & — 0. Both Et 5 and ©&(t) may depend on uy

and t.

Note. The condition of the last paragraph is included since

we will use piecewise constant and non-anticipative perturbations %o
the optimal control. Its intuitive meaning is simply that the effect
of any random control u, which can be used at time t can be

approximated by some random control Et 5 which can be used at any

time in the small interval [t-8,%].

(I-4) Assume that, for any Rn+l valued random variable v

lqi(v)l < Ko(l+E]v)|2), i=0,1,.../k1

Il

|z ()] < K (4E]W)[%), i=o0,m.

The ai(-,°) and ;i(a,-) and h(-) are vector valued (except for



h(-) , which is real valued) Borel functions whose first derivatives

with respect to each argument exist. Write a‘i,x’ ai,e’ §i,x’ gi,e
for the matrices of first partial derivatives of ?ii(a,ﬁ) and }'i(a,ﬁ)
with respect to ;che first and second arguments (g and B) evaluated
at a= J?(t.l), B = E)'E(ti), and suppose that they are square integrable.
Write Ex for the gradient of h(q) evaluated at « = X(T), and
suppose that it is square integrable.

Define the linear vector wvalued operators Q‘i’Ri’ and scalar
valued operator H, all on the space of square integrable n + 1

dimensional random variables, as follows

N ~
Q;V = E[qi,x-v + qi,e'EV]
~ "N
Riv - E[ri,x.v * I'i,e'Ev:|
Hv = Eh'.v,
_ X

where v is an arbitrary (m+l) vector valued random variable with
sgquare integrable camponents. Let Q‘g_ be the ith component of the
1 T 2 j — ,\j 1. Aj 1
vector valued functional Q,; i.e., Qv = E[ (qi,x) v o+ (Eqi,e) v],
~J

where a4 5 - is the gradient of q‘;{(a,ﬁ) evaluated at o = i}?(ti),
b4

B = E}?(ti) , and Qv = PN Qg_v. For any square integrable Rn+l valued
J

randan variable v, and any sequence v, for which E[vn.v]2 -0, let

z

1 ~ A A ~ D »
= E[qi(x(ti) +oev, E:x(ti) + Eevn) - qi(X(ti), Ex(ti))] —-Q;-v

as € = 0. Assume that the components of the vector valued linear



functional Ro are linearly independent, and similarly for those of

RT.
(I-5) For the inactive inequality constraints qi(o), suppose

that there is some €5 > 0 so that
jA
qi(x(ti) + V) <O

for E]v]2 < € For each i suppose that there is a square integrable
random variable v, so that for each active component qi(-) of qi(-),

‘Q:-v (i
i < )

i

3. A Variational Result of Neustadt

For future reference, we describe a variational result of
Neustadt [1]. Let Z denote a locally convex topological space,

and let Q be a set in 7.

Definifion. For any integer p, let P" denote the set of vectors

"
in Rp" B: Bi >0, 'lei < 1}. Let X be a convex Vset in 9 which
. 1=

¥, : j
qg(-) is active at x(.) if qi(ﬁ(ti)) = 0. Otherwise qi(x(tj)) <0,

and the constraint is said to be inactive.



contains the origin {0} and some point other than {0}. For each

p points, wl,...,w“, of X, and arbitrary neighborhood N of {0},

let there exist ‘an € > 0 (depending on LIFEEEPE M and N) so that,

for each ¢ in (O,eo], there is a continuous map ge(s) from PM

to 9 with the property

o
t.(B) C (e(.leiwi + N)} n Q.

i=

Then X 1is said to be a first order convex approximation to Q.

A Basic Optimization Problem.

Let Q' be a set in 7. For some finite given integers p and
B, let ©;(*), - B <1< u, be real valued functions on J. Find
an element W in Q' which minimizes cpo(-). Among all the points
~ . - '3 - -
w in 9 which satisfy the constraints cpi(w) =0, 1i=1,...,u,

¢_;(W) <0, i=1

,+++,B8, find the element w which minimizes ¢ _(w).

More precisely, we say that ¥ is a local solution to the optimiza-

tion problem (or, more loosely, the optimal solution) if, for some

neighborhood N of {0}, _(w) > o (W) for all w in %+ N which
satisfy the constraints. Let ¥ denote the optimal solution. The
constraints ¢_,(-), 1 >0, for which ¢ i(33) = 0 are called the

active constraints. Define the set of indices J = {il ¢ 1(;'}) =0,

i>o0} u {o}.

The Basic Necessary Condition for Optimality.

First we collect some assumptions
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(II-1) The cpi(-), i > 1, are continuous at #. There are
continuous and linearly independent functionals 21, oo ,Zu with the
following property. For any element w e¢ 9, and any bounded sequence

. . o X . A ~
w, converging to w in 7, we have [cpi(w+ewn) - cpi(w)]/e - 4, (w) as

€ -0,

(II-2) There is a neighborhood N of (0} in 7 so that

P i(w?v+w) <0 for w e N, and all inactive constraints ¢ l()

(II-3) Let the active constraints and also ¢ _(+) be con-
tinuous at W. For the active constraints , let there exist continuous
and convex functionals ci(-) with the property that for any we 9,

and any bounded sequence L converging to w in _7;

[o_; (ew ) - o_; (W)1/e - c;(w)

‘as € - 0. Assume that there is some w and some j e J for which
cj(w) > 0. Let there be a w for which ¢, (w) <0 for all j e J.

A case of particular importance is where the differentials’ ci(-)
are linear functionals. Then the next to last sentence of ‘(II_B) is
implied by the last sentence of (II-3).

We now have a particular case of (Neustadt [1], Theorem k.2).

The local or optimal solution here is called a totally regular local

solution in [1].

Theorem 1. Assume (II-1 - II-3). Define Q=Q' - #. ILet W be a



11

local solution to the optimization problem. Then there exists

Opsoe 0,0 Q 150050 g not all zero with o ;, <0 for i > 0, so

that

n
Loy (W) + Lo ses(w) <O
i=1 led

for all w in T{', where K 1is @ first order convex approximation te

Q, and K is the closure of K in 7.

Remark. Let ¢.{+) =0, i>0. If there isa weK for
which cy (w) <0 for all active J, then @ < 0, and we can get

ozo = -l.

Identification with the Stochastic Control Problenm,

For the problems of the sequel we define 7 +to be the locally
convex linear topological space of (n+l) dimensional random func-

tions v with values v(w,t), where v, >0 in 9 if and only if

Elvn(a),t)|2 -0

for each t in [0,T]. The set Q' is defined to be the set df



solutions” x(-,-), 0<t <T to (1) for all controls and initial
conditions satisfying (I-1). The (inequality constraint) functions
(qg} are identified with the {@_E, 4 > 0} and the

(equality constraint) functions {rg} with the [@l’ £ >0} of
Section 3. Also @(x) = Ex_(T) + En(x(T)). % is the optimal element
of Q and Q=Q' - {X}. Conditions (I-1) - (I-5) imply (II-1) -
(11-3).

With the framework of constraints (h), we can include constraints
%, '

l .
such as [ gi(x(s))ds <d; and can approximate constraints such as
)

P{x(t) ¢ A} < d;, where A has a smooth boundary. More general
inequality constraints than () can be included, once the appropriate

linear or convex differentials c, (see II-3) are calculated.

k. The Linearized Equations

Consider the It stochastic differential equations (6) and (T),
where O < t is fixed and t satisfies T< t < T, and o(t,t) is

an (n+l) x (n+l) random matrix’’

+It is easiest to work in the space of random functions 57; as it
is described above. By (I-1), (I-2), we lose nothing by altering
9 so that v, -0 if E]vn(a)‘,t)lP -0 for any p>2. In this
case the quadratic estimates (I-h) on q; and ry cam be ?eplaced
by ]qi(x(ti))] S'Ko(l+E]x(ti)|p), etc. More general situations are
obviously possible and, in particular, the Lipschitz and growth con-
ditions on the zeroeth component of .fﬁ%ﬁ,t) can be relaxed.

++
?_ denotes the random matrix £, (¥(t),3(t),t), and similarly for
g

. i,Xx
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(6) ay(t) = B-v(t)at + T az, (8)3; v(%),
i 2
) av(t,7) = £,8(6,7)dt + L dz, (8)a, (t,7),
i 2

where, by assumption, @(T,T) = I, the identity, and also by assumption,
Ely(T)I2 < o and y(t) is independent of z(t) - z(s), for all

t >8> 1. Both (6) and (7) have unique continuous (in t) solutions
w.p.l, with finite mean square values. We can suppose that the chosen
continuous version éf o(t,t) is measurable in (t,w) for each T.

The uniqueness of the solution, to (6) implies that, for each

T € [0,T], w.p.1,
o(t, )y (7) = y(t)

and, for t > 1

1 > T, w.p.l,

¢(t,¢l)®(fl,r) = @(t’T)t

Furthermbre, if we fix t and let T vary in the raﬁge
OAS.T <%, o(t,7) is mean square continuous in T, uniformly in
t € [7,T]. Indeed, we have w.p.l, that o(t,t+e) and o(t,7) are
the solutions (w.p.l) of (7) which start at time <+ ¢ with initial
values I and Q(T+€,T),.resp. By known estimates for solutions of

stochastic differential equations, for some real Ki’



-1h

E|®(t+e,T) - I]lL < Kle2

and, hence, for t in [7t+e,T]

—_

(®) Blo(t,wre) - 0(t,7)|* < Kyt

Equation (8) implies that there is a continuous version of &(T,T)
(Proposition III.5.3 of [14]) (7 is the parameter, 0 < T < T).

» 2 . 2 2
Finally, if Ely(o)]2 = o(ez) (or o(e)), then Ely(t)|” = 0(¢e")

(or o(ea)) . This last fact will be used frequently in Theorem 2.

5. fThe Convex Cone X

We will require the following lemma.+

Lemma 1. Assume (I-1) - (I-2). Let ¢(-,-) be a L valued

measurable function with values ¢(w,t), 0 < t < T. Suppose that

o(w,*) is Lebesgue integrable on [0,T] for almost all fixed .

Then the function F(-,-) defined by

t
Flo,t) = {; ¢ (w,s)ds

o}

is differentiable with respect to t on an (w,t) set of full

measure with derivative ¢(w,t). Thus, there is a mull set

+The proof of Lemma 1 resulted from a discussion with W. Fleming.
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T, C (0,T) so that, at each t £ T, F(w,t) is differentiable with

In particular, if we define ¢(.,:) by

derivative ¢(w,t), w.p.l.
¢(w,s) = f(ﬁ(s),a(s),s) and let o,q, be any scalars, we have

t+édé
1 ~ ~ ~ ~
< {_eal £(x(s),u(s),s)ds - (op*ay)f(x(t),u(t),t) -0

w.p.l, for any t not in some null set Tl'
There is a null set T, C (0,T) go that for any +t ¢ T, and

n

any R valued random variable vV,

S £(E(s),v,8)ds - (ayta)E(R(E),v,t) -0

‘t-eal

w.p.1l.

Proof. For arbitrary scalars Qp ,0, define the function Fr(',')

o “t'mgr
Fr(w,t) = f ¢(a),s)ds,

t-alr

R

where r is rational in [0,1]. There is a null ® set N, =so that,

for w £ N_, ¢(w,-) is Lebesgue integrable on [0,T] and, hence, for

o ¢ N,

7, (0,8) - (apiap)o(m,4) -0

for almost all t (the null t set depending on ®). Also Frﬁb,t)

w
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converges to (og+ay)®(w,t) on a measurable set §C (Q-N_) X [0,T]
as r —-»0. If Frﬁn,t) converges as r — 0 through the rationals,
it .converges to the same limit as r —» 0 through any sequence.

The Lebesgﬁe measure of the fixed ® sections of § (for
® é;Nb)»is T. Hence by Fubini's theorem, the measurable get $§ has

full measure, Thug, there is a null t set T so that for

1
t £ T, Folo,t) = (o +a)o(w,t) w.p.l. The statements of the first

paragraph of the lemma follow from this.

Let g(-,-) with values g(v,t) denote a Borel function from

B X [0,T] to R™L  which is continuous at each v, uniformly in +t.

Let g(v(t),t) be integrable on [0,T] for any R" valued continuous

function v(t). Then there is a null set T

, 80 that, for t £ T,

and any continuous v(-) function,

o by
| %.£ g(v(s),s)ds - (ai+aé)g(v(t),ﬁ) -0
r T -

as € » 0. The second paragraph of the lemma follows from this by
defining g(-,:) to be f(gom,t);v@n),t) = g(v(w,t),t), where
g(v(w,t),t), where v(w,t) = (X(w,t),v(w)) and noting the continuity

(in ‘(a,v)) properties of f(a,v,t) which were assumed in (I-2). Q.E.D.

The (cnvex Cone - X.

For any fixed s 1in the set [0,T] - @, where' T = T, UT,, and

any rardom variable u_ which is %, measurable and has values in

[ £)]

+The Ti are defined in Lemma 1.
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%, define the element 8x of . Following our usual notation,

we use Ox (t) for either &x
, s,u s

g (o) or Bx (o)
’7s 778 ’7s

(o4
»
—~
ct
~
1]

0, 0<t<s<T

o(5,8)[£(R(s),u,5) - £(R(e),(s),5)]

T z.t > s.

!

Let K denote the set of convex finite combinations of points of
the type COQ(t,O)SX(O), where c¢_ = is arbitrary in [0,w) and &x(0)

is an arbitrary admissible condiﬁion, and points of the type e8x u
. 8,

where c¢ 1is arbitrary in [0,e) and s is arbitrary in [0,T] - @,
and ug is an arbitrary _gg measurable, @g valued random variable.

Def'ine

8x_(t) = 0(t,0)8x(0).

By Theorem 1, K is a first order convex approximation to the set Q' -

{ﬁ} = Q.

Theorem 2. Assume (I-1 - I-3). Then X is a first order convex

approximation to Q = Q' - {2}.

Proof. TLet m denote an arbitrary, but fixed, integer. Define the

set A= (A= (A,...,A) A >0, DA <1} Iet &x,...o0"
1

2

denote any m elements of K. Then, there is an integer q, a set of

)
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fixed times s,, 1=1,...,q, 8 set of %, valued and %  measurable

oo

1 1

)

random variables usi (written ui), i=1,...,q, and a set of gij >0
aij > 0, and admissible initial conditions Sx;(o), i=1,...,q9, so that

each SX?L has the representation

J

;g
3 = Zsijaxs u
=17 3’75 =

We assume that S5 < s Any element in E, the convex hull of

“i4l°
1

(0, 3x 5o .,me), corresponds to same A e A (and conversely), and has

the form
TS ) TA(YE 9) 3 ) )
X, = AL ( B, .0x + R B..0x) = 2 8t,.(A\)bx +
A R R P TR S Rl W U A 8420y
a . 3
% 8t (N)ex
‘j=l dJ
m mN
8t,(A) = LA, BEL(A) = A
ey 151613 1 985 (N LM

Note that eStiO\) = Sti(c—:?\) for any scalar € > 0, and similarly for

5'30‘1(7\). Let 5(62) denote any rendom function v_ for which

2 2 ~o .
E]ve(t)l = 0(e7) for t e [0,T], and write v_= 0(52) if E]ve(t)lg =
0(62) for each t ¢ [0,T]. To prove the theorem we must show that
there is an €, >0 so that, for eacn e< €59 there is. a continuous

map § (M) from A into J of the form

(9) Ce('}\) =%+ e‘éx?\ + pe,?\
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~, 2
where pe,k = oe ).
Next, a perturbed control and perturbed initial condition will
- ~N
be described. Suppose first that the s; are distinet and S5 ﬁ T =

T, UT,. Define t= sup 8ti(%)-q, and the set Ii(ek)

1, €A

Ii(ek)‘g {t: s; - €8t (A) <t < s:}.

For each u_ =u,, let S(Si) be the interval which was defined in
i

(I-3) (corresponding to u ). There is an €, > 0 so that for

. - €T >0,

i
€ < ¢, we have (i)! the Ii(ek) are distinet, (ii): all S5 )

~

(ii1)! et < min [S(Sl),...,S(Sq)]. Define the perturbed control

uek(t)

(lO) u€x(t) = G(t): T é %% Ii(e%)

= usi-e;g"»' t € Ii(€7\),

~e
where u
Si-er

(I-3) holds.

corresponds to u, by (I-3), and as € -0, (5) of
i

If the Si are not distinct, we follow the method for the

deterministic problem [16] and define 7, by

=
1l
i
n
13
m

Sti(K) + oo # Stq(x) it s,

«}
]
il
w
il
A

86, (A) + --- + Str(K) if s r < q.

. , . s s
i i+l r r+l1’
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and I, (ev) by

Ii(e?\) (b 85 - eT; <% < s; - €75 + eStiO\)}

{to s - e(‘éti(?\) + e + Str(7\))

<t<s; - e(8ti+l(7\) 4 ovee + Str(k)).

Then define ue.)\(t) as in (10). Thus, if some s, .are identical,

the intervals are sghifted to the left.

is admissible.
€A

¢ 7 denote the solution of (1) for control wu_, and

By (I-1) and (1-3)7, the perturbed control u

Let x€7\

initial condition

(11)  X(0) + € % s%j (?\)Sx]; (0) = %(0) + €8x, (0) = x4 (0)

j=1 .
where we use
€8x, (0) = Bx 4 (0).
Define
(12) ge(.)\) =X

Fix e in (0,e)). Let AMn) >N in A, as n -« Then

2 »
Elxey\(n) (0) - Xe?\(o)] — 0, and the total length of the intervals on
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which Uen(n) (t) # ue?\(t) converges to zero. These facts imply that
2 . . . s

EIXe?x(n) (1) - Xe')\(t)] -0 for each t, which implies the continuity

of (;6(7\) for each € < ¢ . We need only prove the expansion (9),

and this will be done in three parts.

o}

17, Let Ki denote real numbers. We have the following

relat ions - . . [ - it - - . P P
(132)  ax(t) = £(%(t), W(t),t)dt + T az, (t)o, E(5),t)
Jd

(13b) dxd\(t) f(xe?\(t),uex(t),t)dt + Z dzj (t)crj (Xe.)\(t),t)

d

(13e)  dy,(8) = Ty, (8)at + [£R(5),u,(8),t) - £((5),8(),1)]

+ % dzj (t>0,j,xye?\(t)

7, (0) = 3%, (0) = eﬁx?\(o).

Using standard estimates for solutions of It0 stochastic differential

equations it can be shown that, for some Kl < o,

2
(1) max E max de\(’c)l <k.
e<e_, el O<t<T

. g e s i P e e e et e e - —

Next, we define X(t) = X(t) - xd\(t) and show that

(15) B|%(6)|% = EIR(8) -z, (8)]% = o(3)
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e e -

uniformly in +t. Equation (15) holds for t = 0. Assume it holds

N .
for t = t,, and that uek(t) = u(t) for t e [t,5t;]1. We will

show that (15) holds uniformly in [to,ty]. Then, if (15) holds at
t = s; - ep, we show that it holds uniformly in [s;-ep,8;], for’
any real p for which s, - €p > 0. These two facts imply (15) as

asserted. Let X%(t) = Xek(t) - g(t). Then,

t
%(6) = (6;) + [ [70xg0(2),8(6),8) - £(R(s),8(e), ) 100

t
+ ] Tolrg(5),9) - o(B(3),9)]as(e),
] |

where E]§(t0)[2 = o(ee). By standard estimates, stochastic differential

equations,
~ 2 ~ 2 t ~ 2
Elx(t)]” < K |x(0)]" + K2£ E|x(s)|"ds
o

which implies (15)‘iﬁ [tgst1].  Next, write

t ~ . .
X(t) = X(sg-e0) + [ [E(x,(s),u,(8),8) - £(X(s),U(s),s)ds
' si—gp

:
s felxg(e),8) - 0(R(s),5)1a5(s).
L =€0

1

Using the Lipschitz condition on 0, and Schwarz's inequality on tﬁe

drift term, gives

—~
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i . N .
E]x(t)[eli KBEIx(si-ep)l2 + Kgt / E[£(x\(s),u(5),8) -
s4-€P

o A 2 t ~ 2
- £(X(s),u(s),s)] ds + K [ 1x(s)]"ds.
5;~€p

i

Using (14) and the growth condition [f[2 < Ko(l+]x[2) in (I-2) gives

t ~ 2
+ Ky ] E|x(s)|%ds
Si-EP

4E[;c'(t)|2 < K5E13£(si-ep)12 + Kutz

from which (15) follows in [s . X
(15) [qi ep,%i].

By reasoning close ﬁo the foregoing, it can be shown that
2 2
(16) Bly_,(£)]° = (<)
uniformly in t e [O,T].

o}

2°. Next, it will be shown that

A 2 2
an Blx () - R() - ¥,,(8)]2 = o()
by the method used to show (15). Suppose ua(t) = uek(f) in

t e [t,,%,] and (17) holds for t = t . Write y(t) = Xe?\(t) -

. .
x(t) - Y\(t). Then, for + e [t,,%1,



ol

t
Fog) + { [£6i0(2),806),9) - 23(3),8(),9) - By(s)1as

(%)

t
[ L any()o5xen(2),9) - o5 R(6,9) - 8y 3y (4)]

+

t t |
¥(t,) + f s y(s)ds + {: z dz, (s)cJ T(s) + e (1) + ey(t),
J

(18)

0

‘where, for x(s) = x(s) - X(s), we define

t A ~ A ~ ~ ~
21(8) = [ T5,G() + 0(:)3(2),0(6),8) - £,((6), 8(e), ) (o)

t ~ -~
) = [ Eazy(e)loy (Gs) + FEE(e),8) - oy L ((e),8) ()
% ’

o

where o(-) and ¢(.) are scalar valued random functions with
values in .[O,l]. By (15) and the continuity (in ¢). and bounded-

ness properties of f (2,B,s) and ci,x(cgs),

E]e (t)] = o(e

uniformly in t. With this estimate (LT), easily follows from (18) in [t,,t;].

Next write Sﬁi(%) = p; and let E]y(s -€T, )! o(e ).

For t € [s,-€e7,,s8,.~-€T.+ep, write
[ i i’7i 1 epl]

W

Y2



t

(19)  F(t) = ¥(sg-e1y) + £.‘€T.
1 1

T
- J

8,-€T,
1 € 1

t
+ [ % dz, (s)[o4

S.-€T. J
161']

(19) can be written as

t

(20) }(t) = ;(Si-€Ti) + f
S.—GTi

t

+J
S, -€T,
i

where we define

25

[£(x_\(s),u,(5),8) - £((s),8(s),9)
- ’f\xyex(s)]ds

[£(R(s) u gy (5),8) - £(R(s),8(s),5)Tas

(x(s),8) = 0;(R(s),8) - G; T (5)]

[£(x (), (8),8) - £(R(s),u,,(5),8)]

Zjdzj (s)[cj(x(_:?\(s),s) - o'J.(}?(S),S)] + e3‘(t)

% ' t . ‘
eB(t) = -[[ 'f‘xyex(s)ds + [ Y dzj(s)cj’xyek(s)].

S.~€T,
i € 1

§.-€T, J
17€T3
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Using EIYéx(S)]Z - 0(52) uniformly in = we get, for t in the
desired interval,
B Tan (e ga@Psn I Iy - of
si_eq,—i 3 J j,xye7\ s - K5 L et .V€7\ s s = ofe ))

and similarly for the first term of 65(t). Using this and the

estimates for the two integrals in (20),

t
' 2 dz_ (s)[o.(x (s),s) - .}?s,s 2+
] D)) - 06,0

€ )
Bl 150 (0),500(6),9) - £(R(s), 10, (5),8) Jas|
S.-€T.

< fJG E|% ()| 2as
=5 5;-€Ty 7

and (15), gives (17) in [s;~€T;, 5;-€7;, *+ €p;].

30. To complete the proof, it only remaing to show that
(21) Ely . (t) - & (t)]2 = o(ez)
en €A ‘
(21) holds for t = 0, and indeed, (21) is zero for

t e [O,Sl-eTl]. If (21) holds at tgy, then 1t is true in [to,tl]

. ~ . .
if u,(t) =u(t) io [t,,%,], since w.p.1

(22) Yo (61) = 8% 5 (6) = 0(by,8)[¥ 5 (65) - &%, (5.)1.
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Next, for t e [si—eTi, 8;-€Ts + epi], where Py = ati(x),
€ ~, 2
(23) yel(t) = yek(si—eTi) + 3, () + o(e)

where we define

t
[ TEGR(s),u(5),8) - £(R(s),8(s),5)]ds

S.-€T,
1 1

I (t)

€ _ L€ 1 _ ~, 2
Let J; = Ji(Si—eTi+epi). If yek(to) = yex(to) + o(e”), and

ue%(t) = G(t), t e [t_,t,], then, w.p.1.,
FE(6,) = ot )y (8) + B(D)
ent 1l 120" eNt o :

. €
Furthermore, E[Ji(t)]2 = o(e2) uniformly in t, and o(t-ep,, T-&p,) -

o(t,T) in probability as € -0, for any constants @l,¢21 .

The last paragraph implies that w.p.l., for © £ UT(eh),

where Iz(ek) is the interior of I,(eM),

(2h) ¥, (8) = T 0(t,8,)75 + 0(t,008x, (0) + ().
t>s; '
1

Define

S.-€T,.+ep..
1 € 1 €pl

J; = i {f(ﬁ(s),ui,s) - f(ﬁ(s),a(s),s)jds.
S,-€T,
imi
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e 2 2 . .
Then (I-3) implies that E|J5-7,|” = o(¢”). Thus (2k) is valid for

Ji replacing JE. By Lemma 1, (letting Oy = -'ri + pi, al = 'ri)

1 ~ A A
@ J; - f(x(si),ui,si) - f(x(si),u(si),si)

w.p.1l. as € -0.

Thus, for t £ UI§(€7\),

e L 0(t,s,)8; (N[£R(s;),u;,5;) - T&(sy),8(s,),5,)]

¥ 5 (%)
. eh 1::>s:.L

(25) + @(t,o)éxek(o) + B(eg)

Bx_, (t) + B(eg) .

Since the sets 12(67\) decrease to the empty set as € =0, (25)

holds for all t ¢ [0,T]. Q.E.D.

6. The Maximum Principle

Ccmbining.Th'eorems 1 and 2 we get Theorem 3. Define the n + 1
dimensional column vector P = (l,o, .+.,0)'. Theorem 3 reduces to the

Pontriagin meximum principle, if the noise is absent (¢ = 0).

Theorem 3. Assume (I-1) - (I-5). There are continuous (in t) versions

of o(T,-), o(t;,") (for t<T and t<t,, resp.). There is a
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scalar @ < 0, vectors a; < 0, i=0,1,...,k+t1, (non-positive components

ai) vhere of = O ir qi(%) < 0, and vectors bo?bT’ not all zero, and

i
a null set T ¢ [0,T] so that for all t £ %, and all 52t measurable,

%, velued random variables wu., and admissible x(0), (26a end b) hold,

(262) GE[P+h_(R(T))]'0(T,t) + i:%i>tociE[ai’x+Ea_i’e]®(ti,t)
+ b'TE[?T,X+E?T’e]CD(T,t) ATR(E),u,,t) - TR(E),1(t),8){ <O
(26b) eE[P+hx(§T)]v®(T,o) + 211 a'iE[ai’X+E§i,e]®(ti,O)

R T - tErp xS
+ bTE[rT,X+ErT,e]®(T;O) + boE[ro,X+Efo,e] 8x(0) < 0

(26b) implies that the term in braces in (26b) is zero. Define the

vector p(T) Dby its transpose (27)

27) ‘_--p'_ (1) = 9[_?+hx(§(T))]' + b'T[?T,x“LE?T,e] + ai{+l[aT,>_c+EaT,e]'

B —_— - . - [———

Define the n + 1 dimensional random function p(t), t < T by

-

its transpose (28).

T = -
(28) p' (t) = p'(T)o(T,t), tk <t<g tk-{-l =T
- : A A .
p'(ti) = p(t;) + og{qi’X+Eqi’e], i=1,...,k
p'(t) = pT(£])0(t;,t), 0=t <t j<t<t,

with the use of (27-8), (26) can be written as
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(292) Ept (8)[£(R(t),u,t) - £(R(t),0(¢),t)] <0
(29b) E[p' (0) + by (¥, +EF o)18x(0) = 0.

Furthermore, w.p.l

(30a) E{p' () [£(x(t),u(t),t) - £(x(t),u,,t)][ @) <0
(50b) E{[pr(oj + a%(?o’X+E?O,e)]|5%%} = O.

Proof. The proof of (26) follows from Theorem 1 using the appropriate -
identification of the (continuous in 7 by (I-4)) components of

Qi’Ri with the ¢ zj in Theorem 1, and the fact that K is a first

J"
order convex approximation to §' = @ - 2. by Theorem 2. Also the
(continuous in 7 by (I-4)) linear operator which acts on 8x(T) in
E[_P+hx(§(T)]’6x(T), is identified with c_. Equation (29) follows
from (26) upon using the substitution (27), (28). To prove (30a)

suppose that (30a) is violated on a EZt measurable set Bt with

. - . A
P(B,) > 0. Define u = u . on B, U = u(t) on @ - B,. Then

(29a) is violated with the admissible ﬁ£ replacing the wu, there.

A similar proof yields (30b). Q.E.D.

T. Extensions to Cloged Loop Systems

Thus far the admissible controls are defined to be measurable

on the a priori given og-algebra £@t. If the admissible controls are
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assumed to depend explicitly on the state - or on its past values,
ice., u(t) = u(x(t),t) or u(t) = u(xs,s < t,t), then a very similar

development can be carried out provided either the Lipschitz condition
(51) ,u(a:t) - u(ﬁ)t)] E K]a‘ﬁl

or the generalized Lipschitz condition,

t
lu(x,t) - u(y,t)] _<_{) |x(t-8) - y(t-s)|am(s)

for a bounded measure m(-), hold.” Indeed, with the use of the

perturbed controls and a convex cone K of the type used in Theorem 2,

we obtain Theorem 3, with the exception that the %x terms in the

~

yek(t) and ®(t,7) equations are replaced by ?X + %u'ux' In
particular, let the data available to the control at time t be
g(x(t),t), where g(-,-) ié a Borel function satisfying (31) with
values in some Fuclidean space and ]g(a,t)]2 < Ko(l+|a]2). Let the
class of admissible controls é% be the family of Borel functions
u(-,+) with values u(g(x(t),t),t) and which satisfies (31), and
which has vglues in ‘2% ~at time . Let x(0) satisfy the
relevent parts of (I-1). Let (1-2) hold for admissible wu. The

convex cone is composed of elements with values (for almost all - s)

+For more detail on the more general stochastic differential delay
system, see [15].
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0(t,0)3x(0) + @(t,s)[f(ﬁ(s),u(g(ﬁ(s),s),s),s) - f(ﬁ(s),ﬁ(g(i(s),s),§),s)].

For each ¢ and.admissible u, it is supposed that there is a con-
tinuous function ﬁ(-,-) (of g,t) satisfying (31) with u(g,t) e @kt
for all g and lﬁ(g,t)]g < Ko(l+[g]2) such that u(g,s) = u(g,s).
(This is not a significant restriction.)

Let Hi(g,t) be a function which satisfies the conditions on
Ei(g,t) above and reduces to u(g,si) at t=s;. In (10), let
u,y,t = Ei(g(x(t),t),t) in Ii(ek). Then, under the additional
conditions (I4-5), Theorem 3 holds with the conditioning on é@t re-
placed by conditioning on g(¥(t),t). We have not given more details
on the extensions to state dependent controls, since attempts to
extend the method to & more general class of controls, whose members

may be discontinuous in the state, have faliled so far.
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